亚洲成人aⅴ综合_男人的天堂网址在线观看_日韩国产精品欧美尤物一区二区_超级性按摩中文字幕一级不长_在线观看精品国产福利片2019_中文字幕邻居人妻_最新流露出of高能预警CDwant_粉色视频高清视频版全集_产自拍视频在线_亚洲AV永久无码精品桃花岛知道

您好,歡迎光臨安諾倫(北京)生物科技商城!
全國服務(wù)熱線:400-965-8633
關(guān)注我們
  • 會員中心
  • 會員中心
    詢價列表
    0

    最新加入的商品

    0 件商品 合計:¥ 0
  • 會員中心
    購物車

    最新加入的商品

    件商品 合計:¥ 0

全部產(chǎn)品分類

自主品牌
當(dāng)前位置:首頁 > 抗原抗體、ELISA、WB > 一抗 > Polyclonal Antibodies > Phospho-p38 MAPK (Y182) antibody

Phospho-p38 MAPK (Y182) antibody

貨號 貨期 規(guī)格 / 價格 詢價
AMM07152G 100 μl / ¥4950

Phospho-p38 MAPK (Y182) antibody

品牌

Leading Biology

貨號

AMM07152G

產(chǎn)品分類

Polyclonal Antibodies

研究領(lǐng)域

產(chǎn)品概述

We constantly strive to ensure we provide our customers with the best antibodies. As a result of this work we offer this antibody in purified format. We are in the process of updating our datasheets. If you have any questions regarding this update, please feel free to contact our technical support team. This product is a high quality Phospho-p38 MAPK (Y182) antibody.

分子量

41357 Da

細(xì)胞定位

Antigen Cellular Localization: Cytoplasm. Nucleus

宿主

Rabbit

種屬反應(yīng)性

Human, Mouse

靶點(diǎn)

This antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 155-186 amino acids from human.

亞型

Rabbit Ig

通用名

PRKM11, SAPK2, SAPK2B

基因ID

UniProt ID

功能

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane- associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.

總結(jié)

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane- associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.

形式

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

儲存條件

Store at +4°C short term. For long-term storage, aliquot and store at -20°C or below. Stable for 12 months at -20°C. Avoid repeated freeze-thaw cycles.

應(yīng)用

WB, E

稀釋方法

WB~~1:500

別名

Mitogen-activated protein kinase 11, MAP kinase 11, MAPK 11, 2.7.11.24, Mitogen-activated protein kinase p38 beta, MAP kinase p38 beta, p38b, Stress-activated protein kinase 2b, SAPK2b, p38-2, MAPK11, PRKM11, SAPK2, SAPK2B

圖像

Western blot analysis of extracts from Jurkat cells, untreated or treated with anisomycin (25 μg/ml), NIH/3T3 and Hela cells, untreated or treated with UV (30 minutes), using Phospho-p38 MAPK (Y182) antibody (upper) or Tubulin (lower).

說明書

數(shù)量

相關(guān)產(chǎn)品

選擇 品牌 貨號 產(chǎn)品名稱 規(guī)格 分類 研究領(lǐng)域 說明書 數(shù)量 目錄價
1 Leading Biology APR05963G EGFR Antibody (Y1092) 100 μl Polyclonal Antibodies
¥4950.00 訂購 詢價
2 Leading Biology APR03116G BRCA1 Antibody (aa1847-1863) 100 μl Polyclonal Antibodies
¥4950.00 訂購 詢價
3 Leading Biology AMM05633G Bombesin Receptor 2 (extracellular) Antibody 50 μl Polyclonal Antibodies
¥6950.00 訂購 詢價
4 Leading Biology APR10986G AP3B1 Antibody (aa2-14) 50 μg Polyclonal Antibodies
¥4950.00 訂購 詢價
5 Leading Biology APR11512G Bestrophin-1 (extracellular) Antibody 50 μl Polyclonal Antibodies
¥6950.00 訂購 詢價
6 Leading Biology APG01407G A3 Adenosine Receptor Antibody 50 μl Polyclonal Antibodies
¥6950.00 訂購 詢價

產(chǎn)品添加成功!

購物車已有 0 件產(chǎn)品

加入詢價單成功!

詢價單已有 0 件產(chǎn)品