品牌 |
Leading Biology | 貨號 |
AMM07152G |
產(chǎn)品分類 |
Polyclonal Antibodies | 研究領(lǐng)域 |
|
產(chǎn)品概述 |
We constantly strive to ensure we provide our customers with the best antibodies. As a result of this work we offer this antibody in purified format.
We are in the process of updating our datasheets. If you have any questions regarding this update, please feel free to contact our technical support team.
This product is a high quality Phospho-p38 MAPK (Y182) antibody.
|
||
分子量 |
41357 Da
|
||
細(xì)胞定位 |
Antigen Cellular Localization:
Cytoplasm. Nucleus
|
||
宿主 |
Rabbit
|
||
種屬反應(yīng)性 |
Human, Mouse
|
||
靶點(diǎn) |
This antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 155-186 amino acids from human.
|
||
亞型 |
Rabbit Ig
|
||
通用名 |
PRKM11, SAPK2, SAPK2B
|
||
基因ID |
|||
UniProt ID |
|||
功能 |
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane- associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.
|
||
總結(jié) |
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane- associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.
|
||
形式 |
Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.
|
||
儲存條件 |
Store at +4°C short term. For long-term storage, aliquot and store at -20°C or below. Stable for 12 months at -20°C. Avoid repeated freeze-thaw cycles.
|
||
應(yīng)用 |
WB, E
|
||
稀釋方法 |
WB~~1:500
|
||
別名 |
Mitogen-activated protein kinase 11, MAP kinase 11, MAPK 11, 2.7.11.24, Mitogen-activated protein kinase p38 beta, MAP kinase p38 beta, p38b, Stress-activated protein kinase 2b, SAPK2b, p38-2, MAPK11, PRKM11, SAPK2, SAPK2B
|
||
圖像 |
Western blot analysis of extracts from Jurkat cells, untreated or treated with anisomycin (25 μg/ml), NIH/3T3 and Hela cells, untreated or treated with UV (30 minutes), using Phospho-p38 MAPK (Y182) antibody (upper) or Tubulin (lower). |
||
說明書 |
|||
數(shù)量 |
|
選擇 | 品牌 | 貨號 | 產(chǎn)品名稱 | 規(guī)格 | 分類 | 研究領(lǐng)域 | 說明書 | 數(shù)量 | 目錄價 | |
1 | Leading Biology | APR05963G | EGFR Antibody (Y1092) | 100 μl | Polyclonal Antibodies |
|
¥4950.00 | 訂購 詢價 | ||
2 | Leading Biology | APR03116G | BRCA1 Antibody (aa1847-1863) | 100 μl | Polyclonal Antibodies |
|
¥4950.00 | 訂購 詢價 | ||
3 | Leading Biology | AMM05633G | Bombesin Receptor 2 (extracellular) Antibody | 50 μl | Polyclonal Antibodies |
|
¥6950.00 | 訂購 詢價 | ||
4 | Leading Biology | APR10986G | AP3B1 Antibody (aa2-14) | 50 μg | Polyclonal Antibodies |
|
¥4950.00 | 訂購 詢價 | ||
5 | Leading Biology | APR11512G | Bestrophin-1 (extracellular) Antibody | 50 μl | Polyclonal Antibodies |
|
¥6950.00 | 訂購 詢價 | ||
6 | Leading Biology | APG01407G | A3 Adenosine Receptor Antibody | 50 μl | Polyclonal Antibodies |
|
¥6950.00 | 訂購 詢價 |
微信掃描二維碼,隨時隨地與小諾親密接觸,精彩活動,勁爆優(yōu)惠,觸手可得!