亚洲成人aⅴ综合_男人的天堂网址在线观看_日韩国产精品欧美尤物一区二区_超级性按摩中文字幕一级不长_在线观看精品国产福利片2019_中文字幕邻居人妻_最新流露出of高能预警CDwant_粉色视频高清视频版全集_产自拍视频在线_亚洲AV永久无码精品桃花岛知道

您好,歡迎光臨安諾倫(北京)生物科技商城!
全國服務(wù)熱線:400-965-8633
關(guān)注我們
  • 會(huì)員中心
  • 會(huì)員中心
    詢價(jià)列表
    0

    最新加入的商品

    0 件商品 合計(jì):¥ 0
  • 會(huì)員中心
    購物車

    最新加入的商品

    件商品 合計(jì):¥ 0

全部產(chǎn)品分類

優(yōu)勢(shì)品牌
當(dāng)前位置:首頁 > Monoclonal Antibody Center

Monoclonal Antibody Center


華盛頓州立大學(xué)單克隆抗體中心(Monoclonal Antibody Center)是WSU的服務(wù)中心。它提供了一系列與WSU關(guān)聯(lián)的研究人員和臨床醫(yī)生的單克隆抗體的生產(chǎn)和特性相關(guān)的服務(wù)。該中心的研究常用于臨床問題。臨床研究是對(duì)具有天然疾病的動(dòng)物的有效性進(jìn)行評(píng)估的新藥物或手術(shù)的測(cè)試。在某些情況下,將新藥或手術(shù)的有效性與目前可用的治療方法進(jìn)行比較。VCS的學(xué)院還與大學(xué)其他部門的教師合作。


In the mid 70s, a group of investigators demonstrated in mice that it is possible to immortalize B  lymphocytes producing single monospecific antibodies (mAbs) by fusing B lymphocytes to tissue culture adapted myeloma (malignant form of an antibody producing cell) cells. The hybrid cells (hybridomas) were stable and could be maintained in culture indefinitely or preserved in liquid nitrogen for later use. These findings represented a major breakthrough in the way antibody reagents could be developed for basic and biomedical research. Mice could be immunized with antigens of interest and then used as a source of B lymphocytes to produce mAbs of known specificity. The spleen was shown to be the best source of B lymphocytes for making hybridomas. Hybridomas producing the desired mAbs could be identified by examining culture medium from primary cultures of fused cells. In subsequent investigations, myeloma fusion partners were developed that could only grow in selective growth medium if fused to a B lymphocyte, eliminating the problem of distinguishing hybridomas from cells that had not fused with a B lymphocyte. Myeloma fusion partners were later identified that could no longer produce their own antibody but could produce antibody derived from the B lymphocyte. These advances simplified and improved the methodology for producing mAbs.

Research universities, research institutes and industry established core facilities to exploit mAb technology to develop mAbs for use as analytical tools in the biological and biomedical sciences, in the characterization of the immune system, study the mechanisms by which pathogens cause disease, develop improved diagnostic assays, and identify antigens from pathogens that can be used in subunit vaccines. Because of our research needs, we started developing mAbs for use in food and companion animal research and diagnostic medicine in 1979. To encourage other investigators to use mAb technology, we sponsored the first international symposium and workshop ‘Impact of Monoclonal Antibody Technology on Animal and Plant Agricultural Research’ in June of 1982. We also participated in a workshop sponsored by the National Research Council of the National Academy of Science on ‘Priorities in Biotechnology Research for International Development held in July of 1982, a symposium sponsored by the USDA ‘Hybridoma Technology in Agricultural and Veterinary Research’ held in Oct. of 1983 and an international conference sponsored by the International Laboratory for Research on Animal Diseases ‘The Ruminant Immune System In Health and Disease’ held in Kenya Africa in September 1983. In 1984, we co-sponsored a meeting with Australia ‘Characterization of the Bovine Immune System and the Genes Regulating Expression of Immunity with Particular Reference to their Role in Disease Resistance’ held in Honolulu, Hawaii. During this period of time, we developed some of the first sets of mAbs for use in the study of the immune system in food and companion animals. We also participated in all the international workshops to characterize the first sets of mAbs.